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Abstract  

An interesting conservation property and the time-energy uncertainty are derived in the 
framework of stochastic electrodynamics. 

1. Introduction 

Stochastic electrodynamics is an attempt, using exclusively classical 
arguments, to derive quantum-mechanical results. 

The development of stochastic electrodynamics is based on classical 
physics, special relativity and on the concept of a universal fluctuating 
electromagnetic field at absolute zero of temperature (the zero-point field). 

The application of the Lorenz-invariance to the energy spectrum of the 
zero-point field yields for the one-dimensional case the following expression 
of the spectral density: 

Ko9 a 
E~(~) = 3Tee 3 (1.1) 

where K is a constant, having the dimension of action. 
Using this unique information about the zero-point field and considering 

that its action is Markoffian, numerous quantum-like results were obtained: 

the relation giving the ground state energy of a harmonic oscillator; 
the relation giving the energy of a free electron moving in a uniform 
magnetic field, involving the 'spin' of the electron; 
Planck's law of black-body radiation; 
the probability distribution laws of x and of 2 = p/m,  for the harmonic 
oscillator and for a free electron moving in a uniform magnetic field. 
in the above two cases, the uncertainty relation 

A x .  Ap = K (1.2) 

Schr6dinger's equation, with two extra terms. 
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To achieve complete identification of the ensemble of the results obtained 
in stochastic electrodynamics with those of quantum mechanics, one has 
to show that: 

K = h  

Such a demonstration and a fuller account of the preceding may be found 
in Surdin (1971). 

It appeared interesting to complement (1.2) by considering within the 
framework of stochastic electrodynamics the time-energy indeterminacy. 

These considerations were also prompted by the fact that some discord 
appeared regarding the time-energy indeterminacy in quantum mechanics. 

The usual derivation of the fourth, time-energy indeterminacy relation 

Aot.AoE>~h (1.3) 

where A~, t and A~E are the mean standard deviations of time and energy 
for a quantum-mechanical system in a state ~,  is obtained by considering 
a wave packet. If  Ax  is the linear extension of the wave packet, v its group 
velocity, the uncertainty in the determination of the time instant when the 
packet passes at a given point in space is 

Ax  
A t E  - -  

The uncertainty in the determination of the energy is 

~E 
AE ~_ -~p Ap = 9. Ap 

hence 
At. AE ~ A x . A p  

using (1.2), one obtains (1.3). 
This type of derivation was strongly contested by Bunge (1970) mainly 

on the following grounds: 

relation (1.3), unlike the genuine relation (1.2), has never been proved 
from first principles; 
whereas the energy is a dynamical variable, t, being a parameter, is not. 

Thus for every 7 j one must have Aot = 0. Moreover, in cases where the 
system happens to be in an eigenstate of the energy operator, the standard 
deviation of the energy vanishes as well. 

In conclusion Bunge proposed that formula (1.3) be dropped altogether. 
AUcock (1969) has carefully analysed formula (1.3) and other formulae 

reminiscent of it; he arrives, essentially, to a similar, although not as 
drastic, conclusion as Bunge. 

Several more sophisticated derivations of (1.3) were advanced, e.g. 
Fujiwara (1970) and Durand (1970). The latter proposes to consider the 
time average of an operator time; t then becomes a random variable as 
do the space variables. The time average of t, ((t)) = to has then a physical 
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meaning: it is the instant when the probability I~(ro, t)I z, at a fixed point 
in space ro, has its maximum value. With the help of the usual quantum- 
mechanical formalism and the above considerations Durand derives (1.3) 
in the case of continuous energy spectra. 

The above brief summary of opposing opinions leads one to consider 
that in quantum mechanics (1.3) is shrouded with some uncertainty and 
that more clarification is desirable. 

A possible contribution to the desired clarification might come from 
considerations of the time-energy uncertainty in stochastic electrodynamics. 
However, before dealing with the time-energy uncertainty, an interesting 
conservation property will be presented. 

2. A Conservation Property 

Consider the one-dimensional motion of a particle of mass m and 
electric charge e, moving in the zero-point field and in a field F = -(dU/dx), 
where the potential U(x) is finite for all x. 

The equation of motion in the non-relativistic caset is: 

- z ~  + 2 +----=m dU e #(t) (2.1) 

where z = 1]o9~ = 2eZ/3me 3 and #(t) is the fluctuating zero-point electric 
field. 

Multiplication of both sides of (2.1) by 2, gives 

e*.e(t) (2.2) - z ~ . 2  + . m d x  2 =  
An equivalent form of (2.2) is: 

z d  2dtl d .2 1 d + ( x )  + m ~  v = e m2#( t )  T2 2 (2.3) 

The time average of both sides of (2.3) yields 

d l d  l d  e 
T<<22>> -'%" <<2- 2>> -'~ ~ /  <<22>> -}- ~ <<U>> = ~ <<2. ~>> (2.4) 

The zero-point field, x, and its time derivatives are centred stationary 
random variables, their time averages are independent of the time t. Hence 

e <<2#>> (2.5) 
z<<22>> = m 

This equation is interpreted as follows: the average energy m. T. {22}, 
emitted per unit time by the particle is exactly compensated by the average 

t In  the non-relativistic case the term e .v  A B(t) is neglected. If, however,  this term is 
retained one may  still regain three relations similar to (2.5), one for each coordinate 
axis, since x, y, and z, as well as Ex(t), E~.(t) and Ez(t) are considered to be independent  
r andom variables. 
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energy e. ((~. ~)), conceded by the zero-point field to the particle during the 
same time. 

This is also the necessary condition for the existence of a stationary 
state. Thus, for a harmonic oscillator, where U(x)= 1/2kx 2, Braffort & 
Tzara (1954) and Braffort et al. (1965) have shown that a stationary state 
exists and that the energy of the ground state is 

E ~  1 - 1 09~ l~ -~~ ~  cos (2.6) 

where 0902 = k/m. 

3. Time-Energy Uncertainty in Stochastic Electrodynamics 

The simple case of a non-relativistic harmonic oscillator is considered. 
The arguments used apply also to the case of a free electron moving in a 
uniform magnetic field. 

The equation of motion of the harmonic oscillator is 

- z ~  + 5~ + COo 2 x --- e ~(t) (3. 1) 

For the non-relativistic case Z09o < 1; (3.1) can be approximated by a 
generalised Langevin equation (Surdin, 1970) 

+ Z09o 2 ~ + COo 2 x = e g(t) (3.2) 

Considering that the action of the fluctuating zero-point field on the 
oscillator is a Markoffian process, the steady-state probability distribution 
p(x,5c) is given by (Surdin, 1970) 

~t l" m(,~ 2 -[- 090 2 x 2) "i 
p(x, ~) = • exp / . . . . . . . . .  �9 (3.3) 

k \ ~09s 09s/3 
to obtain (3.3), (1.1) was used. 

One deals here with the case of a very lightly damped oscillator moving 
in a random force field. Due to its very low damping the oscillator possesses 
a very narrow pass-band, so that it responds, essentially, to the 09 0 com- 
ponent of the fluctuating field. 

Under these conditions the energy of the oscillator, to a good approxi- 
mation, is 

m (~2 + 090 2 x 2) (3.4) E = ~  

Using (3.3), the probability distribution p(E) of the energy is 

P(E)= Ct.E.exp(- ~ o )  (3.5) 
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where only the main term in the denominator of the exponential in (3.3) 
is retained. 

The ensemble average value (E>, deduced from (3.5), is 

<E> = Eo = �89 (3.6) 

Neglecting terms of the first order in ~Oo/O~s and higher orders, the ensemble 
average (3.6) is the same as the time average (2.6). 

The mean square value <E 2> is: 

<E2> = 2Eo 2 (3.7) 

and  the mean  s tandard  deviat ion 

AE = [<E2> - <E>2] I12 = K~~176 2 = Eo ( 3 . 8 )  

Let To = 2rc/O~o be the resonant period of the oscillator, then 

To. A E  = To Eo = ~. K (3.9) 

Since the damping is very low, To may be considered as the time necessary 
to measure the average energy Eo, i.e. AE. 

It is of interest to consider the dependence on the oscillator parameters 
of the average energy absorbed per unit time by the oscillator. Rewrite (2.5) as 

e<<:L $(t)>> = mz<<22>> (3.10) 
but 

m,<(:~2)) = m,-cf, Ooa<(x2)) = T(/)o 2 . mO)oZ((x2)) = Tr 2 . k<(x2)) 

and, since the oscillator is very slightly damped, k .  ((x2))= Kcoo/2. Then 
the energy absorbed by the oscillator per unit time is: 

K~o o 
e. <<2. g>> = ZCOo 2 - ~ -  = ,COo ~ Eo (3.11) 

where ZO~o 2 is four times the bandwidth of the oscillator (Surdin, 1970). 
To an increase in To corresponds a decrease in Eo and, due to the narrow- 

ing of the bandwidth, even a faster decrease in the average energy absorbed 
per unit time by the oscillator. 
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